/

f

Real time reasoning in OWL2

for GDPR compliance

(AlJ 289, 2020)

P.A. Bonatti, L. loffredo, |. Petrova, L. Sauro, C
|. Siahaan, Universita di Napoli and CeRICT

30th |JCAI, August 2021

N
-

e Work carried out by the European H2020 project SPECIAL, grant
n. 731601

e Being extended by the H2020 project TRAPEZE, grant n. 883464

2/14

Introduction

e Work carried out by the European H2020 project SPECIAL, grant
n. 731601

e Being extended by the H2020 project TRAPEZE, grant n. 883464

e Goal: Semantic support to GDPR compliance

— GDPR = European General Data Protection Regulation

2/14

Work carried out by the European H2020 project SPECIAL, grant
n. 731601

Being extended by the H2020 project TRAPEZE, grant n. 883464

Goal: Semantic support to GDPR compliance

Preliminary version at IJCAI'18

— A usage policy language based on OWL2
— NP-completeness of PL and tractability of a GDPR-compatible restriction
— A structural subsumption algorithm for PTIME compliance checking

2/14

Work carried out by the European H2020 project SPECIAL, grant
n. 731601

Being extended by the H2020 project TRAPEZE, grant n. 883464

Goal: Semantic support to GDPR compliance

Preliminary version at IJCAI'18

— A usage policy language based on OWL2
— NP-completeness of PL and tractability of a GDPR-compatible restriction
— A structural subsumption algorithm for PTIME compliance checking

New contributions

— Tractability extended to Horn-SRZ Q knowledge bases
— Using Import By Query and knowledge compilation
— Experimental scalability analysis (real time compliance checks)

2/14

PL Policies (BeFit Example)

Data usage policies are formalized as unions of “simple policies”
l.e. £L concepts extended with integer intervals:

(purp.FitnessRecommendation I
ddata.BiometricData
dproc.Analytics M
drecip.BeFit I
dstorage.loc. EU)

L

(dpurp.SocialNetworking Il
ddata.LocationData I
dproc.Transfer
drecip.DataSubjFriends M
dstorage.(loc. EU M [y1, ys](dur)) .

3/14

PL Policies (BeFit Example)

Data usage policies are formalized as unions of “simple policies”
l.e. £L concepts extended with integer intervals:

(purp.FitnessRecommendation I
ddata.BiometricData
dproc.Analytics '
drecip.BeFit I
dstorage.loc. EU)

L

(dpurp.SocialNetworking Il
ddata.LocationData I
dproc.Transfer
drecip.DataSubjFriends M
dstorage.(loc. EU M [y1, ys](dur)) .

As a privacy policy: specifies what BeFit will do with the data

3/14

PL Policies (BeFit Example)

Data usage policies are formalized as unions of “simple policies”
l.e. £L concepts extended with integer intervals:

(purp.FitnessRecommendation I
ddata.BiometricData
dproc.Analytics '
drecip.BeF'it
dstorage.loc. EU)

L

(dpurp.SocialNetworking Il
ddata.LocationData I
dproc. Transfer M
drecip.DataSubjFriends M
dstorage.(loc. EU M [y1, ys|(dur)) .

As a privacy policy: specifies what BeFit will do with the data

As consent to processing: specifies what can be done with the data

3/14

PL Policies (BeFit Example)

Data usage policies are formalized as unions of “simple policies”
l.e. £L concepts extended with integer intervals:

(purp.FitnessRecommendation I
ddata.BiometricData
dproc.Analytics M
drecip.BeF'it
dstorage .loc.EU)

L

(dpurp.SocialNetworking Il
Jdata.LocationData M
dproc. Transfer M
Jrecip.DataSubjFriends M
dstorage.(loc. EU M [y1, ys|(dur)) .

As a privacy policy: specifies what BeFit will do with the data
As consent to processing: specifies what can be done with the data

The objective part of the GDPR can be encoded in the same way 3/14

Vocabularies and Ontologies

e PL is vocabulary-neutral. One may use for example:

— W3C DPVCG group (Data Privacy Vocabularies)
https://www.w3.0rg/community/dpvcg/

e Vocabularies are axiomatized by knowledge bases containing:
(IJCAI'18 version)

e func(R) where R is a role name or a concrete feature;
e range(S, A) where S is a role and A a concept name;
e AL B where A, B are concept names;

o disj(A, B) where A, B are concept names.

4/14

https://www.w3.org/community/dpvcg/

Policy reasoning tasks

e All the main reasoning tasks are reduced to concept subsumption

e permission checking: given an operation request, decide
whether it 1s permitted;

e compliance checking: does a policy P fulfill all the re-
strictions requested by policy P»? (Policy comparison);

e policy validation: e.g. 1s the policy contradictory? Does
a policy update strengthen or relax the previous policy?

e Generally intractable due to the interplay of |/, u](f) and L

Theorem 7 Subsumption checking in P L is coNP-complete.
The result holds even if the knowledge base is empty.

5/14

Tractable case (IJCAI'18)

e The number of constraints [/, u](f) in simple concepts is
bounded by a constant

e PTIME algorithm for checking whether KB = P C Ps:

1. normalize the intervals [I, u] of P, (offline) — O(|P1| - | P2|)
2. “compile” the KB into P, (offline) — O(|P1| - |KBj)
3. apply a structural subsumption algorithm — O(|P1| - | P»|)

6/14

e Knowledge bases are partitioned into I U O where:
— K is a PL KB that defines policy properties with “func” and
“range” axioms

— O is a Horn-SRZ QO KB that defines classes and their properties
(e.g. “LocationData” and its property “precision”)

— In the policies, the roles defined in © may occur within the
scope of those defined in IC, but not viceversa

e Reasoning is based on “Import By Query” (IBQ):

— Normalization and structural subsumption query O with
subsumptions of the form A;11...MA, C A

— This is the only difference from the algorithms of IJCAI'18

7/14

Main theoretical results

e Tractability and intractability extend to C U O, where O belongs to a
tractable fragment of Horn-SRZQ (e.g. £L or DL-lite)

8/14

e Tractability and intractability extend to C U O, where O belongs to a
tractable fragment of Horn-SRZQ (e.g. £L or DL-lite)

e Negative results: Horn-SRZQ is the best we can get

— nominals make IBQ incomplete (no Horn-SROZQ)
— convexity is necessary for tractability (O should better be Horn)

8/14

e Tractability and intractability extend to C U O, where O belongs to a
tractable fragment of Horn-SRZQ (e.g. £L or DL-lite)

e Negative results: Horn-SRZQ is the best we can get

— nominals make IBQ incomplete (no Horn-SROZQ)
— convexity is necessary for tractability (O should better be Horn)

e Under suitable conditions (compatible with GDPR compliance), O
can be compiled into a PL KB

— then the IUJCAI'18 framework applies

8/14

Another view of the theoretical framework

e PL policies are equivalent to unions of conjunctive faceted queries
with disequalities

e Subsumption checking is equivalent to containment of such queries

e Against knowledge bases in (various fragments of) Horn-SRZ 9

9/14

Experimental evaluation

e Sequential Java implementation, supporting the OWL API

— with several optimizations (caching of normalized policies, pre-computation of
normalization)

10/ 14

e Sequential Java implementation, supporting the OWL API

— with several optimizations (caching of normalized policies, pre-computation of
normalization)

e [est cases:

— Random perturbation of SPECIALSs use case policies
— Fully random policies and knowledge bases of increasing size

10/ 14

e Sequential Java implementation, supporting the OWL API

— with several optimizations (caching of normalized policies, pre-computation of
normalization)

e [est cases:

— Random perturbation of SPECIALSs use case policies
— Fully random policies and knowledge bases of increasing size

e Some representative results:
— On fully random policies, and medium KB (O(10°) classes and axioms):
~ 14.7 ms (avg) per compliance check/subsumption
— On the realistic policies: from 410 to 570 u-sec per compliance check

— Compares favourably with Hermit, ELK, GraphDB, and RDFox (with the
standard reduction of query containment to query answering)

10/ 14

Summary and ongoing work

e PL is generally intractable, but in applications interval constraints are
limited = compliance checking is tractable

— also when the KB is in a tractable fragment of Horn-SRZ O
— and —in some sense — when it can be compiled into a PL KB

11/14

e PL is generally intractable, but in applications interval constraints are
limited = compliance checking is tractable

— also when the KB is in a tractable fragment of Horn-SRZ O
— and —in some sense — when it can be compiled into a PL KB

e Scalability tests prove that real-time compliance checking is possible in this
framework

— further improvements may be possible using more efficient languages
and parallelism

11/14

e PL is generally intractable, but in applications interval constraints are
limited = compliance checking is tractable

— also when the KB is in a tractable fragment of Horn-SRZ O
— and —in some sense — when it can be compiled into a PL KB

e Scalability tests prove that real-time compliance checking is possible in this
framework

— further improvements may be possible using more efficient languages
and parallelism

e Ongoing work in TRAPEZE:

— extending policies with negation (“my location can be tracked but not
when I'm here”)

11/14

e PL is generally intractable, but in applications interval constraints are
limited = compliance checking is tractable

— also when the KB is in a tractable fragment of Horn-SRZ O

— and —in some sense — when it can be compiled into a PL KB

e Scalability tests prove that real-time compliance checking is possible in this
framework

— further improvements may be possible using more efficient languages
and parallelism

e Ongoing work in TRAPEZE:

— extending policies with negation (“my location can be tracked but not
when I'm here”)

— recursive policies that apply to recipients in transitive data transfers
(extension with greatest fixpoints)

11/14

e PL is generally intractable, but in applications interval constraints are
limited = compliance checking is tractable

— also when the KB is in a tractable fragment of Horn-SRZ O

— and —in some sense — when it can be compiled into a PL KB

e Scalability tests prove that real-time compliance checking is possible in this
framework

— further improvements may be possible using more efficient languages
and parallelism

e Ongoing work in TRAPEZE:

— extending policies with negation (“my location can be tracked but not
when I'm here”)

— recursive policies that apply to recipients in transitive data transfers
(extension with greatest fixpoints)

11/14

intervals occurring in:

P [T L]
P - - -
split P;’s
intervals : 1000 T 010

Afterwards, for all new [/1,u;] and all [l2, us] occurring in P, either
[11, ul] C [12, UQ] or [ll,ul] M [ZQ,’LLQ] = ()

Interval splitting in concepts: [1,u](f) ~ [, z1](f) U ... U [z, u](f)

Then unions are moved to the top level using
3R(C1 LI CQ) = dR.C7 UdR.CYH

In the tractable cases, this takes polynomial time (and space)

13/ 14

Second normalization phase

1)
2)
3)
4)
5)
6)
7

1D~ L

dR. 1 ~ |

[, ul(f) ~ L

(3R.D) M (3R.D') N D" ~» 3R.(D M D) 1 D"

[, ua](f) M [l2, ua](f) M D ~ [max(l1, l2), min(u1, u2)](f) N D
dR.DN D'~ 3AR.(DN AN D'

A1 MMATT D~ L

ifl>u
if func(R) € K
if func(f) € K

if range(R, A) € K and A not a conjunct of D

lfAl ;* A;_:'A2 E*

5, and disj(A], A5) € K

14 /14

The structural subsumption algorithm

Algorithm 1: STS(K,C C D)

Input: K and an elementary C' C D where C' is normalized
Output: true if K = C C D, false otherwise
Note: Below, by C' = C’' M C"” we mean that either C' = C" or
(" is a conjunct of C (possibly not the first one)
1 begin
2 if C' = | then return t rue
3 ifD=A C=ATNC"and A’ C* A then return t rue
4 if D= [l,u](f)and C =[I','](f)yNC" andl <1’ and
u' < w then return t rue
5 it D=3R.D, ¢'=(3R.C") " and
STS(K, C' C D') then return t rue
6 if D=D'nD" STS(K,C C D), and
STS(K,C C D") then return t rue
7 else return false
8 end

15/ 14

	Introduction
	PL Policies (BeFit Example)
	Vocabularies and Ontologies
	Policy reasoning tasks
	Tractable case (IJCAI'18)
	Extension to Horn-SRIQ KB
	Main theoretical results
	Experimental evaluation
	Summary and ongoing work
	
	Interval normalization
	Second normalization phase
	The structural subsumption algorithm

