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n. 731601

• Being extended by the H2020 project TRAPEZE, grant n. 883464

• Goal: Semantic support to GDPR compliance

– GDPR = European General Data Protection Regulation

• Preliminary version at IJCAI’18

– A usage policy language PL based on OWL2

– NP-completeness of PL and tractability of a GDPR-compatible restriction

– A structural subsumption algorithm for PTIME compliance checking

• New contributions

– Tractability extended to Horn-SRIQ knowledge bases

– Using Import By Query and knowledge compilation

– Experimental scalability analysis (real time compliance checks)
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Data usage policies are formalized as unions of “simple policies”

i.e. EL concepts extended with integer intervals:

As a privacy policy : specifies what BeFit will do with the data

As consent to processing: specifies what can be done with the data

The objective part of the GDPR can be encoded in the same way
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• PL is vocabulary-neutral. One may use for example:

– W3C DPVCG group (Data Privacy Vocabularies)

https://www.w3.org/community/dpvcg/

• Vocabularies are axiomatized by knowledge bases containing:

(IJCAI’18 version)

https://www.w3.org/community/dpvcg/
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• All the main reasoning tasks are reduced to concept subsumption

• Generally intractable due to the interplay of [l, u](f) and ⊔
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• The number of constraints [l, u](f) in simple concepts is

bounded by a constant

• PTIME algorithm for checking whether KB |= P1 ⊑ P2:

1. normalize the intervals [l, u] of P1 (offline) – O(|P1| · |P2|)

2. “compile” the KB into P1 (offline) – O(|P1| · |KB|)

3. apply a structural subsumption algorithm – O(|P1| · |P2|)
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• Knowledge bases are partitioned into K ∪O where:

– K is a PL KB that defines policy properties with “func” and

“range” axioms

– O is a Horn-SRIQ KB that defines classes and their properties

(e.g. “LocationData” and its property “precision”)

– In the policies, the roles defined in O may occur within the

scope of those defined in K, but not viceversa

• Reasoning is based on “Import By Query” (IBQ):

– Normalization and structural subsumption query O with

subsumptions of the form A1 ⊓ . . . ⊓An ⊑ A

– This is the only difference from the algorithms of IJCAI’18
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• Tractability and intractability extend to K ∪O, where O belongs to a

tractable fragment of Horn-SRIQ (e.g. EL or DL-lite)

• Negative results: Horn-SRIQ is the best we can get

– nominals make IBQ incomplete (no Horn-SROIQ)

– convexity is necessary for tractability (O should better be Horn)

• Under suitable conditions (compatible with GDPR compliance), O
can be compiled into a PL KB

– then the IJCAI’18 framework applies
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• PL policies are equivalent to unions of conjunctive faceted queries

with disequalities

• Subsumption checking is equivalent to containment of such queries

• Against knowledge bases in (various fragments of) Horn-SRIQ
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• Sequential Java implementation, supporting the OWL API

– with several optimizations (caching of normalized policies, pre-computation of

normalization)

• Test cases:

– Random perturbation of SPECIAL’s use case policies

– Fully random policies and knowledge bases of increasing size

• Some representative results:

– On fully random policies, and medium KB (O(105) classes and axioms):

∼ 14.7 ms (avg) per compliance check/subsumption

– On the realistic policies: from 410 to 570 µ-sec per compliance check

– Compares favourably with Hermit, ELK, GraphDB, and RDFox (with the

standard reduction of query containment to query answering)
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• PL is generally intractable, but in applications interval constraints are

limited ⇒ compliance checking is tractable

– also when the KB is in a tractable fragment of Horn-SRIQ

– and – in some sense – when it can be compiled into a PL KB

• Scalability tests prove that real-time compliance checking is possible in this

framework

– further improvements may be possible using more efficient languages

and parallelism

• Ongoing work in TRAPEZE:

– extending policies with negation (“my location can be tracked but not

when I’m here”)

– recursive policies that apply to recipients in transitive data transfers

(extension with greatest fixpoints)

– Questions?
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Interval normalization
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intervals occurring in:

P2 : [ [ ] [ ] [ ] [ ] [ ] ]

P1 : [ [ ] [ ] [ ] [ ] [ ] ]

split P1’s

intervals : [ [ ] [ ] [ ] [ ] [ ] ]

Afterwards, for all new [l1, u1] and all [l2, u2] occurring in P2, either

[l1, u1] ⊆ [l2, u2] or [l1, u1] ∩ [l2, u2] = ∅

Interval splitting in concepts: [l, u](f) ❀ [l, x1](f) ⊔ . . . ⊔ [xn, u](f)

Then unions are moved to the top level using

∃R.(C1 ⊔ C2) ≡ ∃R.C1 ⊔ ∃R.C2

In the tractable cases, this takes polynomial time (and space)
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