
Real time reasoning in OWL2

for GDPR compliance
(AIJ 289, 2020)

P. A. Bonatti, L. Ioffredo, I. Petrova, L. Sauro,

I. Siahaan, Università di Napoli and CeRICT

30th IJCAI, August 2021

Introduction

2 / 14

• Work carried out by the European H2020 project SPECIAL, grant

n. 731601

• Being extended by the H2020 project TRAPEZE, grant n. 883464

Introduction

2 / 14

• Work carried out by the European H2020 project SPECIAL, grant

n. 731601

• Being extended by the H2020 project TRAPEZE, grant n. 883464

• Goal: Semantic support to GDPR compliance

– GDPR = European General Data Protection Regulation

Introduction

2 / 14

• Work carried out by the European H2020 project SPECIAL, grant

n. 731601

• Being extended by the H2020 project TRAPEZE, grant n. 883464

• Goal: Semantic support to GDPR compliance

– GDPR = European General Data Protection Regulation

• Preliminary version at IJCAI’18

– A usage policy language PL based on OWL2

– NP-completeness of PL and tractability of a GDPR-compatible restriction

– A structural subsumption algorithm for PTIME compliance checking

Introduction

2 / 14

• Work carried out by the European H2020 project SPECIAL, grant

n. 731601

• Being extended by the H2020 project TRAPEZE, grant n. 883464

• Goal: Semantic support to GDPR compliance

– GDPR = European General Data Protection Regulation

• Preliminary version at IJCAI’18

– A usage policy language PL based on OWL2

– NP-completeness of PL and tractability of a GDPR-compatible restriction

– A structural subsumption algorithm for PTIME compliance checking

• New contributions

– Tractability extended to Horn-SRIQ knowledge bases

– Using Import By Query and knowledge compilation

– Experimental scalability analysis (real time compliance checks)

PL Policies (BeFit Example)

3 / 14

Data usage policies are formalized as unions of “simple policies”

i.e. EL concepts extended with integer intervals:

PL Policies (BeFit Example)

3 / 14

Data usage policies are formalized as unions of “simple policies”

i.e. EL concepts extended with integer intervals:

As a privacy policy : specifies what BeFit will do with the data

PL Policies (BeFit Example)

3 / 14

Data usage policies are formalized as unions of “simple policies”

i.e. EL concepts extended with integer intervals:

As a privacy policy : specifies what BeFit will do with the data

As consent to processing: specifies what can be done with the data

PL Policies (BeFit Example)

3 / 14

Data usage policies are formalized as unions of “simple policies”

i.e. EL concepts extended with integer intervals:

As a privacy policy : specifies what BeFit will do with the data

As consent to processing: specifies what can be done with the data

The objective part of the GDPR can be encoded in the same way

Vocabularies and Ontologies

4 / 14

• PL is vocabulary-neutral. One may use for example:

– W3C DPVCG group (Data Privacy Vocabularies)

https://www.w3.org/community/dpvcg/

• Vocabularies are axiomatized by knowledge bases containing:

(IJCAI’18 version)

https://www.w3.org/community/dpvcg/

Policy reasoning tasks

5 / 14

• All the main reasoning tasks are reduced to concept subsumption

• Generally intractable due to the interplay of [l, u](f) and ⊔

Tractable case (IJCAI’18)

6 / 14

• The number of constraints [l, u](f) in simple concepts is

bounded by a constant

• PTIME algorithm for checking whether KB |= P1 ⊑ P2:

1. normalize the intervals [l, u] of P1 (offline) – O(|P1| · |P2|)

2. “compile” the KB into P1 (offline) – O(|P1| · |KB|)

3. apply a structural subsumption algorithm – O(|P1| · |P2|)

Extension to Horn-SRIQ KB

7 / 14

• Knowledge bases are partitioned into K ∪O where:

– K is a PL KB that defines policy properties with “func” and

“range” axioms

– O is a Horn-SRIQ KB that defines classes and their properties

(e.g. “LocationData” and its property “precision”)

– In the policies, the roles defined in O may occur within the

scope of those defined in K, but not viceversa

• Reasoning is based on “Import By Query” (IBQ):

– Normalization and structural subsumption query O with

subsumptions of the form A1 ⊓ . . . ⊓An ⊑ A

– This is the only difference from the algorithms of IJCAI’18

Main theoretical results

8 / 14

• Tractability and intractability extend to K ∪O, where O belongs to a

tractable fragment of Horn-SRIQ (e.g. EL or DL-lite)

Main theoretical results

8 / 14

• Tractability and intractability extend to K ∪O, where O belongs to a

tractable fragment of Horn-SRIQ (e.g. EL or DL-lite)

• Negative results: Horn-SRIQ is the best we can get

– nominals make IBQ incomplete (no Horn-SROIQ)

– convexity is necessary for tractability (O should better be Horn)

Main theoretical results

8 / 14

• Tractability and intractability extend to K ∪O, where O belongs to a

tractable fragment of Horn-SRIQ (e.g. EL or DL-lite)

• Negative results: Horn-SRIQ is the best we can get

– nominals make IBQ incomplete (no Horn-SROIQ)

– convexity is necessary for tractability (O should better be Horn)

• Under suitable conditions (compatible with GDPR compliance), O
can be compiled into a PL KB

– then the IJCAI’18 framework applies

Another view of the theoretical framework

9 / 14

• PL policies are equivalent to unions of conjunctive faceted queries

with disequalities

• Subsumption checking is equivalent to containment of such queries

• Against knowledge bases in (various fragments of) Horn-SRIQ

Experimental evaluation

10 / 14

• Sequential Java implementation, supporting the OWL API

– with several optimizations (caching of normalized policies, pre-computation of

normalization)

Experimental evaluation

10 / 14

• Sequential Java implementation, supporting the OWL API

– with several optimizations (caching of normalized policies, pre-computation of

normalization)

• Test cases:

– Random perturbation of SPECIAL’s use case policies

– Fully random policies and knowledge bases of increasing size

Experimental evaluation

10 / 14

• Sequential Java implementation, supporting the OWL API

– with several optimizations (caching of normalized policies, pre-computation of

normalization)

• Test cases:

– Random perturbation of SPECIAL’s use case policies

– Fully random policies and knowledge bases of increasing size

• Some representative results:

– On fully random policies, and medium KB (O(105) classes and axioms):

∼ 14.7 ms (avg) per compliance check/subsumption

– On the realistic policies: from 410 to 570 µ-sec per compliance check

– Compares favourably with Hermit, ELK, GraphDB, and RDFox (with the

standard reduction of query containment to query answering)

Summary and ongoing work

11 / 14

• PL is generally intractable, but in applications interval constraints are

limited ⇒ compliance checking is tractable

– also when the KB is in a tractable fragment of Horn-SRIQ

– and – in some sense – when it can be compiled into a PL KB

Summary and ongoing work

11 / 14

• PL is generally intractable, but in applications interval constraints are

limited ⇒ compliance checking is tractable

– also when the KB is in a tractable fragment of Horn-SRIQ

– and – in some sense – when it can be compiled into a PL KB

• Scalability tests prove that real-time compliance checking is possible in this

framework

– further improvements may be possible using more efficient languages

and parallelism

Summary and ongoing work

11 / 14

• PL is generally intractable, but in applications interval constraints are

limited ⇒ compliance checking is tractable

– also when the KB is in a tractable fragment of Horn-SRIQ

– and – in some sense – when it can be compiled into a PL KB

• Scalability tests prove that real-time compliance checking is possible in this

framework

– further improvements may be possible using more efficient languages

and parallelism

• Ongoing work in TRAPEZE:

– extending policies with negation (“my location can be tracked but not

when I’m here”)

Summary and ongoing work

11 / 14

• PL is generally intractable, but in applications interval constraints are

limited ⇒ compliance checking is tractable

– also when the KB is in a tractable fragment of Horn-SRIQ

– and – in some sense – when it can be compiled into a PL KB

• Scalability tests prove that real-time compliance checking is possible in this

framework

– further improvements may be possible using more efficient languages

and parallelism

• Ongoing work in TRAPEZE:

– extending policies with negation (“my location can be tracked but not

when I’m here”)

– recursive policies that apply to recipients in transitive data transfers

(extension with greatest fixpoints)

Summary and ongoing work

11 / 14

• PL is generally intractable, but in applications interval constraints are

limited ⇒ compliance checking is tractable

– also when the KB is in a tractable fragment of Horn-SRIQ

– and – in some sense – when it can be compiled into a PL KB

• Scalability tests prove that real-time compliance checking is possible in this

framework

– further improvements may be possible using more efficient languages

and parallelism

• Ongoing work in TRAPEZE:

– extending policies with negation (“my location can be tracked but not

when I’m here”)

– recursive policies that apply to recipients in transitive data transfers

(extension with greatest fixpoints)

– Questions?

12 / 14

Interval normalization

13 / 14

intervals occurring in:

P2 : [[] [] [] [] []]

P1 : [[] [] [] [] []]

split P1’s

intervals : [[] [] [] [] []]

Afterwards, for all new [l1, u1] and all [l2, u2] occurring in P2, either

[l1, u1] ⊆ [l2, u2] or [l1, u1] ∩ [l2, u2] = ∅

Interval splitting in concepts: [l, u](f) ❀ [l, x1](f) ⊔ . . . ⊔ [xn, u](f)

Then unions are moved to the top level using

∃R.(C1 ⊔ C2) ≡ ∃R.C1 ⊔ ∃R.C2

In the tractable cases, this takes polynomial time (and space)

Second normalization phase

14 / 14

The structural subsumption algorithm

15 / 14

	Introduction
	PL Policies (BeFit Example)
	Vocabularies and Ontologies
	Policy reasoning tasks
	Tractable case (IJCAI'18)
	Extension to Horn-SRIQ KB
	Main theoretical results
	Experimental evaluation
	Summary and ongoing work
	
	Interval normalization
	Second normalization phase
	The structural subsumption algorithm

